0755-82908211 info@sensorstech.com 耐特恩网站
Case 公司新闻
来源:
据外媒报道,12月24日,麻省理工学院的工程师设计了一种常规超声成像的替代方法,这种方法不需要与身体接触,可用于无法忍受探针进入身体的患者,如婴儿、烧伤患者或皮肤敏感的患者。在扫描志愿者前臂的试验中,研究人员能够观察到皮肤以下约5厘米处常见的组织特征,如肌肉、脂肪和骨骼。这些图像与传统的超声波相当,是使用聚焦在半米外的远程激光产生的。由于声波比光传播到体内的距离要长,因此研究人员首先研究如何在皮肤表面将激光束的光转换成声波,以便在体内成像更深。该团队选择了1550 nm激光器,该波长很容易被水吸收,并且对眼睛和皮肤都是安全的,有很大的安全边际。由于皮肤主要由水组成,因此研究小组认为皮肤应有效吸收该波长,并且它会随着反应而升温和膨胀。当它振荡回到正常状态时,可以预期皮肤会产生通过身体传播的声波。研究人员用一个1550nm的脉冲激光产生声波,用另一个调谐到相同波长的连续激光远程探测反射声波,验证了这一想法。第二个激光是一个运动探测器,它测量了声波从肌肉、脂肪和其他组织反射到皮肤表面所引起的振动。反射声波产生的皮肤表面运动引起激光频率的可测量变化,通过对全身激光进行机械扫描,研究人员能够在不同的位置获取数据,并生成该区域的图像。一种新的超声波技术利用激光在皮肤下产生图像,而不像传统的超声波探头那样与皮肤接触。新的激光超声技术被用来产生一个人类前臂的图像(左),这也是使用常规超声成像(右)。由X.Zhang等人提供。研究人员首先利用这一新的装置,将金属物体嵌入一个类似皮肤含水量的明胶模具中进行成像。他们用商业超声探头对同一明胶成像,发现两幅图像相似。然后,他们对切除的动物组织(在本例中是猪皮)进行成像,发现激光超声可以区分细微的特征,如肌肉、脂肪和骨骼之间的界限。最后,研究小组利用麻省理工学院人类实验委员会批准的方案,在人类身上进行了第一次激光超声实验。在扫描了几名健康志愿者的前臂...
发布时间: 2019 - 12 - 27
来源:
可连续测量一个人的血糖,心率和其他生理状况的微小皮下植入物是现代医学的圣杯。新加坡国立大学(NUS)的一组研究人员最近取得了巨大的飞跃,使这一梦想更加接近现实。他们开发了一种新的无线读取器,该读取器对传感器读数的微小变化非常敏感,因此可以创建亚毫米级的微型传感器,其体积很小,可以注入到皮肤下。当前使这些微型传感器小型化的努力在很大程度上受到技术限制的阻碍。这些传感器太小,无法由电池供电,因此它们需要将传感器读取器放置在它们附近,以利用磁场不断检测诸如化学或压力变化之类的信号。为了使阅读器能够理解信号,传感器必须足够大以在阅读器中产生强信号。到目前为止,研究人员还无法创建低于1毫米的可行微传感器。国立工程学院电气与计算机工程系和国立大学健康创新与技术学院的国大团队在助理教授约翰·何(John Ho)的带领下,通过校准无线阅读器的工作,开发了一种测量信号的新方法在一个特殊的时刻。这是一种特殊状态,在这种状态下,读取器对附近的物体变得极为敏感。结果是,新的读取器非常灵敏(比现有读取器灵敏三倍),甚至可以读取亚毫米微传感器发出的微小信号。该团队开发了一种读取器的工作原型,该读取器可以在使用注射器植入皮肤下的同时读取直径为0.9毫米的微传感器。在实验室实验中,阅读器能够通过检测无电池微型传感器的细微运动来监视呼吸速率和心率。
发布时间: 2019 - 12 - 25
来源:
随着机器人深入人们的生活,例如工厂、仓库、酒店、商场、餐厅等环境中的使用,人们对机器人的移动能力越为重视,市场对智能化设备的需求日益高涨。以至于避障成为一个极为关键且必要的功能。避障是指移动机器人根据采集的障碍物的状态信息,在行走过程中通过传感器感知到妨碍其通行的静态和动态物体时,按照一定的方法进行有效地避障,最后达到目标点。实现避障与导航的必要条件是环境感知,在未知或者是部分未知的环境下避障需要通过传感器获取周围环境信息,包括障碍物的尺寸、形状和位置等信息,因此传感器技术在移动机器人避障中起着十分重要的作用。下面小编和大家一起看看超声波传感器和激光雷达传感器在机器人避障中的相关解决方案。目前市面上常见的机器人避障基本都采用到激光雷达,激光雷达作为自动驾驶和机器人等领域中的重要传感器,一直扮演着“眼睛”的角色,360°扫描周围环境,构建厘米级别高精度地图,为后续避障导航做辅助。但如果仅使用激光雷达作为唯一的一种避障传感器,是无法在一些复杂场所胜任避障工作的,必须要为机器人配备其它的传感器作为补充,比如:超声波传感器,它的成本非常低,实施简单,可识别透明物体,缺点是检测距离近,三维轮廓识别精度不好,所以对桌腿等复杂轮廓的物体识别不好,但是它可以识别玻璃、镜面等物体。目前较为常见的组合是采用激光雷达、深度相机外加超声波等传感器的方式来进行融合避障导航,但,是不是机器人产品上安装的传感器越多,就越能有效检测障碍物并规避呢?理论上,机器人上安装的传感器种类和数量越多,导航定位系统就越能有效的检测出环境中的风险和障碍物。但实际情况中,额外的传感器并非多多益善。除了成本因素外,不合理的传感器组合将可能导致相互干扰的发生。此外,每种传感器的误差和噪音模型存在区别。比如超声波传感器的测距精度和检出障碍物的方位精度远低于激光雷达。超声波传感器以其性价比高、硬件实现简单等优点,在移动...
发布时间: 2019 - 12 - 23
来源:
吞咽障碍患者,进行吞咽运动时要监测其喉咙,但这类监测设置通常比较昂贵,只能在大型医疗中心使用,所以患者必须定期去医院就诊。一种新的可穿戴监控设备即将投放市场,可以在家中对患者进行远程监控,让数百万吞咽障碍患者的治疗更轻松、更实惠。普渡大学的研究人员发明了可穿戴设备来帮助吞咽障碍患者背景吞咽困难是指食物从口腔至胃、贲门运送过程中受阻而产生咽部、胸骨后或食管部位的梗阻停滞感觉。成功完成一次吞咽,需要超过40对头部和颈部的肌肉、6对脑神经和多个大脑区域进行精确协调。这些途径发生任何中断都可能导致口咽吞咽障碍。吞咽困难通常由多种神经系统疾病(例如中风、脑瘫、帕金森氏病和痴呆症)、头部和颈部癌症、创伤和遗传综合征引起。仅在美国,每年约有944万成年人和50万名儿童发生吞咽困难。吞咽困难影响日常生活,若没有适当的治疗,可能会导致严重的后果,比如营养不良、脱水、呼吸衰竭甚至死亡。当前吞咽困难的康复干预措施,需要频繁进行头颈运动,并依靠昂贵的生物反馈设备进行监测,例如口腔压力计、肌电图设备和内窥镜等。这种治疗方案要求患者每天或每周多次前往医院进行治疗,这对许多患者来说往往是不可行的,特别是对于那些行动不便或生活在农村地区的患者。因此,有研究表明吞咽干预的平均治疗依从性仅在22和52%之间,可能导致治疗效果欠佳和预后不良。目前也有便携式监控设备,允许实时收集吞咽动作期间的生物反馈信号数据。但目前大多数便携监控设备都是刚性或半柔性的,不适合与颏下区域的曲线表面连接,特别是在头颈部运动的情况下,所以常常导致数据获取不良和患者不适。创新为了解决以上问题,研究人员创造了一种可贴在皮肤上的传感器贴纸,该贴纸可牢固地附着在脖子上,并通过细电缆连接到无线发射器单元。该传感器贴片使用了聚酰亚胺(PI)柔性薄片(13μm),并利用激光系统在其两侧涂上Cu膜(9μm)。随后用铜蚀刻剂进行湿法蚀刻,制作出PI薄片...
发布时间: 2019 - 12 - 20
来源:
陀螺仪,又叫角速度传感器,是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,同时,利用其他原理制成的角运动检测装置起同样功能的装置也称陀螺仪。陀螺仪的名字由来陀螺仪名字的来源具有悠久的历史。据考证,1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中地的转子(rotor),由于它具有惯性,它的旋转轴永远指向一固定方向,因此傅科用希腊字 gyro(旋转)和skopein(看)两字合为“gyro scopei ”一字来命名该仪器仪表。最早的陀螺仪的简易制作方式如下:即将一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度,如简易图下图所示。其中,中间金色的转子即为陀螺,它因为惯性作用是不会受到影响的,周边的三个“钢圈”则会因为设备的改变姿态而跟着改变,通过这样来检测设备当前的状态,而这三个“钢圈”所在的轴,也就是三轴陀螺仪里面的“三轴”,即X轴、y轴、Z轴,三个轴围成的立体空间联合检测各种动作,然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。因此一开始,陀螺仪的最主要的作用在于可以测量角速度。陀螺仪的基本组成部件当前,从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动,更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。  陀螺仪的基本部件有:陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值); 内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构);附件(是指力矩马达、信号传感器等)。陀螺仪的...
发布时间: 2019 - 12 - 18
837页次10/168首页上一页...  567891011121314...下一页尾页
0755-82908211 info@sensorstech.com 耐特恩公众号
友情链接:    必优  |  必优网  |  华创测试  |  多分量传感器  |  力传感器  |  压力传感器  |  扭矩传感器
Copyright © 2022 深圳耐特恩科技有限公司



 

 

犀牛云提供云计算服务
ignore
5
电话
    ignore
6
二维码
    ignore
分享