0755-82908211 info@sensorstech.com 耐特恩网站
Case 行业快讯
来源:
最初,大多数无人机都是相对简单的玩具。然而,最近,它的飞行能力显著提高,其更安全、更稳定、更容易控制这些优点使其得到更广泛的应用。    高性能微机电系统(MEMS)传感器的应用是这一改进的关键因素之一。无人机传感器市场正在快速增长:    根据IHS Markit(消费和移动设备运动传感器——2017年)的数据,到2021年,无人机和玩具直升机的MEMS运动传感器(即加速度计、陀螺仪、IMU和压力传感器)市场预计将达到约7000万台,2018年至2021年复合增长17%。    MEMS传感器对无人机飞行性能的影响    由于使用了惯性MEMS传感器,无人机可以确保其方向稳定,可以由用户精确控制,甚至可以自主飞行。然而,一些挑战使无人机系统设计复杂化,例如电机校准不完善、系统动力学可能因有效载荷、突然运行条件或传感器错误而变化。这些挑战可能导致定位过程中的偏差,最终导致导航过程中的偏差,甚至导致无人机故障。    高质量的MEMS传感器和先进的软件对于无人机超越玩具至关重要。惯性测量单元(IMU)、气压传感器、地磁传感器、专用传感器节点(ASSN)和传感器数据融合的精度对无人机的飞行性能有着直接而实质性的影响。    尺寸限制和恶劣的环境和操作条件,如温度变化和振动,将传感器的要求提高到新的水平。MEMS传感器必须尽可能避免这些影响,并提供准确可靠的测量。    实现卓越飞行性能的方法有很多:软件算法,如传感器校准和数据融合;机械系统设计,如减振,以及根据无人机制造商自身的要求选择MEMS传感器。让我们仔细看看MEMS传感器,并参考一些例子。    无人机的核心是姿态航向参考系统(AHRS),它包括惯性传感器、磁强计和处理单元。AHRS估计设备的位置,如横摇、纵摇和横摆角。传感器误差(如漂移、灵敏度误差或热漂移)可导致定位误差。图1显示了加速度计的偏移函数形式的定位误差(...
发布时间: 2019 - 09 - 29
来源:
据麦姆斯咨询报道,数字化转型的下一阶段已经到来,该阶段利用不断进步的传感器连接着数十亿设备及物体来进行数据收集和传输,可触及网络最边缘。    新一波创新浪潮将数字智能化扩展到了如个人电脑、平板电脑和智能手机等专用设备之外的其它领域。如果某设备的功耗性能优异,它就可成为物联网(IoT)或如联网汽车、可穿戴技术、智能建筑及城市等任意自动化系统中的智能联网节点。    许多人认为这些现象的本质上就是数字化。毕竟,物联网是一种网络,可在云端聚集数十亿的数据点,然后通过复杂的软件进行处理和分析。但这些变化的核心就是传感器,它们是一种无处不在的器件,可测量和表征如光、热、运动和声音等物理现象,并将数字网络中1和0表征锚定在现实世界。    尽管在硅基芯片发明之前,传感器就以某种形式存在,但如今的传感器为了支持数十亿新设备的扩展,正以前所未有的速度发展着。新传感技术正在推动创新应用,如用于消费和移动应用的3D光学传感技术、用于可靠的摄像头自动对焦及图像校正的飞行时间(ToF)测量、用于“工业4.0”操控的高端机器视觉、用于医疗诊断的高分辨率成像,还有自动调节建筑物、自动/无人驾驶汽车,以及24小时个人健康监测器。    把握整个传感器系统的实现    随着传感器技术的快速发展,传感器节点已遍布照明设备、服装、食品包装,甚至是置于人体内部或嵌入皮肤中,但它们必须满足一些具有挑战性的新要求:    • 极其微型化    • 超低功耗    • 连接网络的能力    • 应用——处理信号或数据输出    此外,这些下一代传感器必须适用于包括照明、药物传输、门锁、公尺以及传统电子器件在内的所有类型的“事物”的制造商。许多情况下,制造商寻求的不仅仅是电容、电阻或输出电压不同的传感器;他们还需要采用“即插即用型”传感器系统,该系统可以很容易地连接到网络,并与处理器或如智能手机等配对的主机相连。  ...
发布时间: 2019 - 09 - 28
来源:
在各类航天器中,热控系统(thermal protection system)相当于航天器在太空中的空调,让航天器可以舒适、稳定运行。航天器的热控系统主要分为被动热控技术与主动热控技术。在主动热控技术中,温度传感器支持下的电加热技术非常重要。    在航天器主动热控技术中,温度传感器支持下的电加热技术非常重要。资料图    我们知道,航天器内部有大量的、非常复杂的部件,不同材料的热膨胀与热收缩系数千差万别,在温度剧变的情况下,会产生意料之外的变形。为防止电子设备元器件长期处于高温或低温环境下失效,热控制系统便成为航天器上最重要的子系统之一。该系统主要负责针对航天器外部热环境和自身热特性,综合运用合理的技术措施,对热量的产生、吸收、传输和排散等环节进行调节,保证航天器的温度处于合理范围。    航天器的被动和主动热控技术    在进行航天器热控系统设计时,合理选择设计辐射、导热等参数,利用不同热物理性能的材料和传热器件,通过自然热平衡的方式,将航天器各部分的温度控制在规定范围内,这就是被动热控技术。    随着航天探索任务的不断深化,航天器的仪器载荷、工作模式和所处的环境越来越复杂,需要的功耗也越来越大,在这样的情况下,仅仅使用隔热材料和热管之类的被动热控技术,已难以满足要求,这时就要用主动热控技术了。    主动热控系统,简言之,就是在变化的内、外热环境下,利用自动控制系统,自动调节各种相关传热参数,使航天器的仪器设备工作温度保持在规定的范围内。常见的主动热控技术有电加热技术、单相流体回路技术、两相流体回路技术和通风冷却技术等。相比之下,被动热控技术简单可靠,而主动热控技术灵活高效。    航天器制造,资料图    电加热技术    该技术将电能转化为热能,使被控制对象维持在一定的温度范围内。    对于航天器来说,电加热技术一般包括电加热器、控制器和温度传感器三个部分,这...
发布时间: 2019 - 09 - 06
来源:
车联网是物联网发展的重大领域,智能网联汽车是车联网的核心,正处于高速发展中。汽车是一个复杂而庞大的科技载体,因为其庞大的市场体量吸引了各类技术的投入。在车联网中,车用传感器技术是车联网集成的关键技术,同时,也是一项很基础的支撑技术。    智能网联汽车路测现场资料图    首先,我们先来来了解一下什么是智能网联汽车?    简言之,智能网联汽车就是搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现V2X(车与人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,可实现“安全、高效、舒适、节能”行驶,并最终可实现替代人来操作的新一代汽车。    在车联网时代,主动安全技术成为备受关注的新兴领域,需要改进现有的主动安全系统,比如侧翻(rollover)与稳定性控制(ESC),这就需要MEMS加速度传感器和角速度传感器来感测车身姿态。MEMS传感器可对温度、位置、转速、加速度和振动等各种信息进行实时准确的测量,是车辆电子控制系统的关键部件。    车身体姿态检测控制资料图    作为典型车联网应用的主动安全技术,车身姿态检测,比如侧翻(rollover)与稳定性控制(ESC),就需要MEMS加速度传感器和角速度传感器等姿态检测传感器,来感测车身姿态。此外,姿态传感器还被用于桥梁监测,倾角测量,工业自动调平等, 甚至医疗器械、太阳能监测等领域。    特别是在汽车市场上,为实现高精度的车身姿态控制,对组合了陀螺仪信号和加速度信号的组合陀螺仪传感器的需求特别大。造成这种需求的原因有很多。    其中的一个原因是,在许多发达国家开始立法要求新汽车必须配置有安全功能,如电子稳定控制系统(ESC),防抱死制动系统(ABS),和轮胎压力监测系统(TPMS)。另一个原因是新的功能,诸如电驻车制动器(EPB)和上坡起动帮助(HAS),正在一个...
发布时间: 2019 - 09 - 05
来源:
据外媒报道,虽然机翼上形成的冰是飞机坠毁的主要原因,但这些冰现在还都是主要通过眼睛发现,而目视检查很容易受到人为错误和环境变化的影响。另外,虽然近年来,研究人员对航空发动机核心机在高空结冰现象的理解已经有很大进展,但研发为飞行员提供危险告警的可靠传感器系统的工作,如今仍处在相对初始阶段。    研究人员展示这款小巧便携式的结冰探测传感器装置,资料图    如今,一种新型传感器可能会改变这一情况,因为它通过微波来即时检测冰的形成,在飞行员或地勤人员观察到结冰之前,便可检测到冰在表面形成时的精确时间。相关研究报告已发表在《Sensors and Actuators B: Chemical》上。    据悉,这款被叫做平面微波谐振器传感器的装置,由加拿大英属哥伦比亚大学奥卡那根分校工程学院的研究人员研发。在研发过程中,研究人员在使用了几种办法未果后,于是想到通过使用微波谐振器,因为它们具有高灵敏度,低功率,易于制造等优点。    目前,平面微波谐振器装置已成功用于传感监测领域,可用于监测固体,液体和气体材料。然而,还没有该装置进行冰和雪探测的相关研究,尽管它们对运输和安全应用中的结冰探测作用明显。    据了解,这款新型传感器大体由沉积在一层薄塑料上的金属构成,足够坚固,可经受住各种考验,且它的制造既简单成本又低。这一检测能力,可防止与冰冷飞机机翼相关的悲剧。传感器可全面了解机体任何表面上的结冰情况,如飞机机翼。例如,传感器能够检测水何时撞到机翼,跟踪从水到冰的相变,然后测量其厚度。总之,该传感器可使地面和飞行中的除冰更快、更便宜、更有效。    简而言之,该传感器的工作原理是通过测量发射微波的共振频率、振幅和散射模式,如何被可能存在于其表面的任何水、霜或冰改变实现检测。在实验室的测试中,其能在冰点以下冷却的几秒钟内检测到结霜现象。    相比之下,人类观察者要等到传感器处于-1...
发布时间: 2019 - 09 - 04
0755-82908211 info@sensorstech.com 耐特恩公众号
友情链接:    必优  |  必优网  |  华创测试  |  多分量传感器  |  力传感器  |  压力传感器  |  扭矩传感器
Copyright © 2022 深圳耐特恩科技有限公司



 

 

犀牛云提供云计算服务
ignore
5
电话
    ignore
6
二维码
    ignore
分享